應(yīng)用

技術(shù)

物聯(lián)網(wǎng)世界 >> 物聯(lián)網(wǎng)新聞 >> 物聯(lián)網(wǎng)熱點新聞
企業(yè)注冊個人注冊登錄

華為押對寶?4D毫米波雷達將成自動駕駛首選?

2022-05-16 14:29 物聯(lián)傳媒
關(guān)鍵詞:華為

導(dǎo)讀:4D毫米波雷達應(yīng)勢而生,增加了對目標高度維度數(shù)據(jù)的探測和解析,實現(xiàn)了距離、方位、高度以及速度四個維度的信息感知,可以有效地解析目標的輪廓、類別等等,并具備高角分辨率,完美彌補了傳統(tǒng)毫米波雷達的短板。

4D毫米波雷達應(yīng)勢而生,增加了對目標高度維度數(shù)據(jù)的探測和解析,實現(xiàn)了距離、方位、高度以及速度四個維度的信息感知,可以有效地解析目標的輪廓、類別等等,并具備高角分辨率,完美彌補了傳統(tǒng)毫米波雷達的短板。

“在我看來,毫米波雷達在發(fā)展的過程中一旦涉及到成像,則會有大量的深度學習、人工智能的算法和需求導(dǎo)入進來,中國廠商由于擁有更貼近于自身的新能源主機廠和造車新勢力,因此也具備了更多的優(yōu)勢?!?/p>

——南京隼眼電子科技有限公司CTO張慧博士

什么是“4D”?

根據(jù)產(chǎn)業(yè)鏈調(diào)研,2020年起國內(nèi)外已正式進入L3級自動駕駛階段,2021年后將呈現(xiàn)加速狀態(tài),自動駕駛的冗余度和容錯性特性,要求越是高階的自動駕駛需要越多的傳感器。細分市場也越來越發(fā)達并且有不同的用例,對市場提出了不同的半導(dǎo)體解決方案需求。

作為ADAS核心的傳感器之一,近年來毫米波雷達逐漸從3D演進到了4D成像。那么什么是4D呢?簡單來說就是Range(距離)、Velocity (速度)、Azimuth (水平角度)、Elevation (俯仰角度)。

傳統(tǒng)雷達輸出3個維度的信息,分別是方位角、速度和距離。后兩者通過FFT取得,前者是利用多個天線的相位差信息獲得。傳統(tǒng)雷達沒有俯仰角天線通道,只有方位角天線通道,自然就沒有俯仰角信息。

解決辦法有幾種,通常是增加俯仰通道,但是在總通道數(shù)不變的情況下,意味著水平方位角精度的降低,畢竟水平方位角才是主要信息。要增加總通道數(shù),成本增加還是小事,運算量會大幅度增加數(shù)倍乃至幾十倍。目前車載4D毫米波雷達常用的工作機制,則是連續(xù)波雷達中的調(diào)頻連續(xù)波雷達(FMCW),它能夠以更低功耗、更大帶寬的方式,向外連續(xù)地發(fā)射電磁波,從而實現(xiàn)測量目標的距離和速度信息。而根據(jù)輸入輸出天線陣列數(shù)目的不同,F(xiàn)MCW雷達可以分為單輸入多輸出(SIMO)雷達和多輸入多輸出(MIMO)雷達。對車載毫米波雷達系統(tǒng)而言,SIMO雷達早已在3D毫米波雷達中廣泛應(yīng)用,而MIMO雷達概念則是在2003年由Bliss和Forsythe首次提出,其是車載4D毫米波雷達發(fā)展的關(guān)鍵技術(shù)理論之一。

為了解決傳統(tǒng)毫米波雷達角分辨率低、點云密度低的問題,當下出現(xiàn)了四種4D毫米波雷達解決方案:

基于傳統(tǒng)CMOS雷達芯片,強調(diào)“軟件定義的雷達”,主要廠家有傲酷、Mobileye等;

將多發(fā)多收天線集成在一顆芯片,直接提供成像雷達芯片,比如Arbe、Vayyar等;

最傳統(tǒng)的,則是將標準雷達芯片進行多芯片級聯(lián),以增加天線數(shù)量,比如大陸、博世等一眾公司;

通過超材料研發(fā)新型雷達架構(gòu),代表廠家有Metawave等。

image.png

第一個使用ARS540的車型是寶馬的電動車旗艦iX

2020年中期,汽車毫米波雷達市場占有率第一名德國大陸汽車推出全球第一個4D成像毫米波雷達,即ARS540,第一個使用ARS540的車型可能是寶馬的電動車旗艦iX。這之后4D成像毫米波雷達概念風靡業(yè)界。

ARS540是第一個具備能夠真正測量目標高度的毫米波雷達,也就是其垂直分辨率Elevation比較高,達到2.3°,遠高于德州儀器方案,畢竟大陸汽車是自己設(shè)計天線,擁有超過20年的經(jīng)驗,且MR3003也確實比較強。

為什么各大廠商紛紛轉(zhuǎn)向4D雷達?

近年來,國際上涌現(xiàn)出一批專注于4D成像毫米波雷達方案的創(chuàng)新公司,除了本文提到的Arbe、Vayyar,還有Unhder、MetaWave、EchoDyne、Ainstein等一批企業(yè),已經(jīng)形成了較強的技術(shù)積累。同時,一批新的產(chǎn)品設(shè)計公司也不斷基于現(xiàn)有方案進行創(chuàng)新,如美國傲酷推出的Eagle就采用了軟件算法加載的方式,實現(xiàn)更高的分辨率;國內(nèi)華為推出的4D成像毫米波雷達也是基于現(xiàn)有方案獲得更高的分辨率。而博世、日本電裝、采埃孚、日本電產(chǎn)艾萊希斯、Smartmicro等老牌雷達企業(yè)也在加緊對4D成像毫米波雷達的推進進度。

華域汽車于2021年表示已完成4D成像毫米波雷達產(chǎn)品的自主研發(fā),計劃于當年第四季度實現(xiàn)量產(chǎn)。此外,還有不少新玩家涌入布局,如Mobileye在2022年CES展上推出了全套的傳感器,當中就包括4D毫米波圖像雷達;安智杰則于不久前發(fā)布了4D毫米波成像雷達;蘇州毫米波在投資者互動中表示,4D點云成像雷達正在按計劃研發(fā)調(diào)試中;楚航科技、納瓦電子、森思泰克、木牛科技、幾何伙伴、珠海上富電技等也在布局,但具體的量產(chǎn)時間尚未公布。

2021年,4月18日華為發(fā)布毫米波雷達產(chǎn)品,探測距離達300m,屬于中長距毫米波雷達。根據(jù)發(fā)布會成像效果視頻顯示,其針對特斯拉過往因“長尾場景”引致的意外如路邊斜置靜止車、下閘道等場景探測效果較好。華為發(fā)布高分辨率4D成像毫米波雷達,有望切入中長距毫米波雷達市場。

image.png

華為高分辨4D成像雷達發(fā)布

來源:華為

小米集團2021年6月投資的縱目科技推出了“ZM-SDR1”4D毫米波雷達,兼顧低速泊車和高速行駛場景,輸出可比擬激光雷達的致密點云信息,清晰勾勒出周邊建筑物輪廓,從而實現(xiàn)基于雷達點云的高精度定位。2021年7月參與幾何伙伴融資過程,公司與上汽集團合作,研發(fā)以4D毫米波成像雷達為主傳感,輔之以可見光和紅外成像多傳感融合的感知系統(tǒng),再通過感知、規(guī)劃、決策、控制一體化軟件模塊與工具鏈,集成軟硬件一體的自動駕駛系統(tǒng)軟件。

image.png

縱目科技4D毫米波雷達

來源:縱目科技

現(xiàn)如今,如果哪家毫米波雷達廠商說自己沒有研發(fā)4D成像雷達,在一級市場的估值都要打個折扣。從技術(shù)上來講,4D成像毫米波雷達是必然趨勢,有能力做4D毫米波雷達的廠商基本都在做4D成像毫米波雷達。即便是博世這樣的巨頭,也在去年急忙推出了第五代至尊版毫米波雷達,試水4D賽道。

image.png

部分4D點云成像雷達代表產(chǎn)品

來源:各公司官網(wǎng)

為什么各大廠商迫不及待的轉(zhuǎn)向4D成像雷達呢?在早期的ADAS中認為,毫米波雷達只要能感測到前方的車輛就可以了。但是隨著路況的復(fù)雜提升,要去毫米波雷達也要能檢測到行人、兒童,電動車、三輪車等非常規(guī)車輛的需求。對于毫米波雷達的感知范圍也有提高,要求實現(xiàn)360°的環(huán)視感知,用到L3以上的輔助泊車功能。這些都對毫米波雷達芯片有了更高需求:

更高的分辨率要求

比如整車是裝ACC的車子,它前面有兩排車并排行駛,當這兩臺車距離較遠時,就需要進行分辨,傳統(tǒng)雷達可能分辨不出來,因為它受限于傳統(tǒng)雷達的角度分辨能力的不足。這時候系統(tǒng)不知道它前面有東西,就可能會進行誤減速和誤加速,從而造成不好的影響。如果要分辨出前面300米的2臺車,這時候角度的分辨度要達到1度以下,這是傳統(tǒng)雷達或2片雷達目前很難做到的。傳統(tǒng)毫米波雷達也有點云但是數(shù)量少,且沒有俯仰信息,4D毫米波雷達增加了俯仰信息和更多的點云數(shù)據(jù),“點云一多就可以勾勒出物體輪廓,便是成像”。

物體分類要求

在傳統(tǒng)雷達里通常不會去提這個概念,因為傳統(tǒng)雷達的點云密度比較稀疏,沒有辦法做到物體分類。所以傳統(tǒng)雷達出來的目標都是稀疏的點。

高度偵測要求

當車前150米有一個6.5米高的紅綠燈時,需要判斷出這個紅綠燈不是在地上,而是在空中,車輛是可以從紅綠燈上面開過去的。這時需要的角分辨率約為2度,而這卻是傳統(tǒng)雷達很難達到的。能測高度的同時就可以不再過濾靜態(tài)目標,因為窖井蓋、減速帶、立交橋、天橋、路邊金屬牌會導(dǎo)致雷達誤動作,因此傳統(tǒng)雷達都將靜態(tài)目標過濾掉。如果能測量高度,就能提高目標檢測的置信度,不再過濾靜態(tài)目標。

特斯拉之所以“拋棄”傳統(tǒng)3D雷達(速度、距離和方位角),其中一個原因就是毫米波雷達的角分辨率性能瓶頸阻礙了多傳感器的前融合效果。由于自動駕駛中,雷達要與周圍的傳感器,如攝像頭等,去做互補。但是傳統(tǒng)雷達沒有辦法做到真的互補。因為任務(wù)傳感器和攝像機傳感器可以輸出目標的屬性,即它可以辨認出人、車和其他物體,但傳統(tǒng)雷達無法做到,所以萬一高度自動駕駛車輛的任務(wù)傳感器失效的話,就相當于系統(tǒng)已經(jīng)缺失了這個資訊。因此當成像雷達可以分辨物體屬性時,才能真正做到了兩方面的互補。

NXP 全球副總裁,ADAS產(chǎn)品線總經(jīng)理Steffen Spannagel就認為,無法依靠單一的器件一統(tǒng)天下?!案鶕?jù)我們對市場的理解,沒有一刀切的傳感器,因為市場有很多細分,而且自動駕駛級別也不同,我們認為攝像頭和雷達會共存,因為它們的優(yōu)缺點互補性非常強。比較特殊的是激光雷達,恩智浦認為有很大的可能性成像雷達的解決方案是可以取代激光雷達的。成像雷達現(xiàn)在還位于發(fā)展的早期,我們相信未來它的性能可以大大提升,并在理想情況下最終能夠取代激光雷達?!?NXP 全球副總裁,ADAS產(chǎn)品線總經(jīng)理Steffen Spannagel表示。

早在2015年德國大陸汽車就預(yù)感到傳統(tǒng)3D(即速度、距離和方位角,這是傳統(tǒng)毫米波雷達提供的數(shù)據(jù))毫米波雷達已經(jīng)走到盡頭,并于2016年開始研發(fā)ARS540。同樣視覺起家的Mobileye也已經(jīng)在部署4D成像雷達的研發(fā),具有2304個虛擬通道(高于大陸、采埃孚的192個),計劃于2025年量產(chǎn)。

相比4D毫米波成像雷達,激光雷達則存在另外一個缺陷,容易受到雨霧等天氣變化的影響。如果激光雷達在能見度只有0.1公里的大霧環(huán)境中操作時,它幾乎沒有辦法進行偵測。如果激光雷達在大雨的環(huán)境中操作,偵測距離就衰減了50%左右。實測的成像雷達結(jié)果顯示,就算遇到下雨天氣,成像雷達的偵測范圍還是可以到300米,這是成像雷達比激光雷達更適合做自動駕駛車傳感器重要的原因。如果開自動駕駛模式在高速公路上走的時候,突然一陣大雨,自動駕駛功能就失效了,這是不可接受的。

盡管激光雷達目前也被行業(yè)所看好,但成本巨高不下且量產(chǎn)門檻高是其目前暫且無法解決的痛點。從性能效果來說,4D成像毫米波雷達算是3D毫米波雷達的升級版,另一方面,從成本上看,4D成像毫米波雷達的成本也僅為激光雷達的10%-20%。4D毫米波雷達的價格在100-150美元之間,因此,4D毫米波雷達會在追求極致性價比,不能規(guī)模采用激光雷達,但又需要有激光雷達的部分優(yōu)勢功能如靜止目標檢測等的城市L3、AVP等場景下,迅速占據(jù)重要位置。

4D雷達芯片玩家有哪些?

image.png

圖源 |網(wǎng)絡(luò)

從目前來看,4D毫米波雷達已進入小規(guī)模量產(chǎn)導(dǎo)入階段。前期依然是國外公司占據(jù)主導(dǎo),不過國內(nèi)企業(yè)行動亦較為快速,未來可期。各大廠商軍備競賽背后,一定會是4D成像雷達的技術(shù)愈發(fā)成熟,搭載率向上攀升。據(jù)中金公司預(yù)計,至2025年中國車載4D成像雷達市場規(guī)模在悲觀、中性、樂觀情況下有望分別達到1.9、3.6、5.4億美元,2022E-25ECAGR分別達到34%、64%、88%。據(jù)行業(yè)分析師預(yù)測,到2030年,L2+自動駕駛汽車可能將占汽車總產(chǎn)量的近50%。

不過也有業(yè)內(nèi)專家指出,以目前技術(shù)水平,成像雷達還需要加大研發(fā)力度。其中一個重要原因是,成像雷達仍處于成長階段,其性能還無法滿足需求,缺乏有足夠優(yōu)勢的芯片支撐,特別是中國市場。目前汽車毫米波雷達行業(yè)主要有兩種方式實現(xiàn)4D雷達量產(chǎn)(還有超材料技術(shù)的路徑,但量產(chǎn)難度較大),一種是基于NXP、TI等傳統(tǒng)雷達天線及芯片方案商提供的標準方案。一種是類似Arbe、Mobileye自研芯片。從公開信息看,目前可選芯片方案主要有TI、恩智浦、賽靈思、Arbe等少數(shù)幾家。

為了加快成像雷達的上車進度,各知名芯片企業(yè)已在加快研發(fā)力度:

在傳統(tǒng)毫米波雷達芯片領(lǐng)域,NXP和英飛凌幾乎壟斷了這個市場。但是在4D成像雷達市場,TI則成為了推動者。德州儀器于2016年曾推出基于CMOS工藝的高集成度77GHz毫米波雷達傳感器AWR1642系列,欲打破恩智浦和英飛凌兩家企業(yè)對傳統(tǒng)毫米波雷達芯片的壟斷格局,但事與愿違。

在洞悉到毫米波雷達要獲得更高角分辨率,就要增加天線數(shù)量這一需求后,德州儀器于2018年推出基于AWR2243FMCW(調(diào)頻連續(xù)波)單芯片收發(fā)器的4片級聯(lián)4D毫米波雷達全套設(shè)計方案。包括最難搞的天線也考慮在內(nèi),內(nèi)嵌4-elementseries-fedpatch天線。算法部分則提供MATLABMIMO和beamforming兩種選擇,就像交鑰匙工程,一下拉低了4D成像毫米波雷達的技術(shù)門檻。歷經(jīng)AWR1642、AWR2243兩代產(chǎn)品后,TI已站穩(wěn)了成像雷達的腳跟。

除德國大陸汽車,中國乃至全球大部分的4D成像毫米波雷達基本都是基于TI的級聯(lián)方案,有追求低成本的2片級聯(lián),有追求性能的4片級聯(lián)。還有家以色列的初創(chuàng)公司Vayyar自己開發(fā)關(guān)鍵的收發(fā)器芯片,華為的12發(fā)24收4D成像毫米波雷達似乎是采用自己做的芯片,應(yīng)該是4片3發(fā)6收的收發(fā)器級聯(lián)而成,但也有說法可能是德州儀器的AWR1642六片級聯(lián)而成。

2020年底,NXP宣布推出新的TEF82xx單芯片方案,采用16nmFinFET和40nmRFCMOS技術(shù),支持76-81GHz頻段,可用帶寬高達4GHz。一個6位相位旋轉(zhuǎn)器,支持調(diào)制MIMO和波束轉(zhuǎn)向。

2022年初,全球知名毫米波雷達芯片提供商恩智浦在CES上宣布S32R45成像雷達芯片量產(chǎn),同時推出了S32R41新產(chǎn)品。S32R41處理器的推出為業(yè)界帶來了首款專為L2+自動駕駛應(yīng)用量身定制的16nm雷達處理器。

S32R294采用NXP的z系列處理器內(nèi)核,實時Z4內(nèi)核同步運行,而雙Z7處理器用于處理應(yīng)用程序。整體性能是此前S32R274SoC的兩倍,包括支持CSE3安全模塊設(shè)計的OTA更新,可用于處理最多兩顆TEF82xx芯片。

而S32R45則標志著恩智浦向Arm平臺的遷移,SoC具有多個同步運行的Cortex-M7以及一對Cortex-A53應(yīng)用內(nèi)核,也支持鎖步機制。S32R45雷達處理器是恩智浦第6代汽車雷達芯片組系列中的旗艦產(chǎn)品。它有助于實現(xiàn)更高級別自動駕駛,支持L2+級到要求苛刻的L5級用例,其中每輛汽車可能需要十個以上的成像雷達傳感器。該處理器還能夠滿足運輸、交通管理和其他需要可靠的高分辨率感測的工業(yè)應(yīng)用需求。

作為業(yè)界首款專用16nm成像雷達處理器,恩智浦S32R45已經(jīng)投入量產(chǎn),并將于2022年上半年開始首次用于客戶量產(chǎn)。此外,恩智浦還推出了新的雷達處理器S32R41,可將4D成像雷達的優(yōu)勢延伸到更多的汽車。這兩款處理器可滿足L2+級至L5級的自動駕駛需求,用于構(gòu)建4D成像雷達,實現(xiàn)360度環(huán)繞感知。

德國大陸則采用FPGA來作為4D雷達的芯片方案。德國大陸在2016年開始研發(fā)4D成像毫米波雷達時,選用的芯片方案為恩智浦的S32R274,但該芯片無法讓雷達小型化,最后選用賽靈思的ZynqUltraScale+RFSoC系列FPGA。

該芯片方案發(fā)布于2019年2月21日,專為射頻領(lǐng)域設(shè)計,第二、三代ZynqUltraScale+RFSoC具有更高的射頻性能及更強的可擴展能力,分別最高支持到5GHz和6GHz,從而滿足新—代5G部署的關(guān)鍵需求。同時,還可支持針對采樣率高達5GS/S的14位模數(shù)轉(zhuǎn)換器(ADC)和10GS/S的14位數(shù)模轉(zhuǎn)換器(DAC)進行直接RF采樣,二者的模擬帶寬均高達6GHz。

除了上述廠家,包括以色列的Arbe、Vayyar都在自研4D成像雷達的處理芯片。

值得一提的還有英飛凌。英飛凌雖然坐擁全球2/3車用77GHz雷達芯片市場,但在4D成像毫米波雷達芯片方面進展緩慢。2020年初,英飛凌宣布與美國傲酷合作,進入車規(guī)級成像雷達市場;同年7月,在英飛凌汽車電子開發(fā)者大會上,英飛凌繼續(xù)表示,下一步會推出點云成像毫米波雷達芯片。

截至目前,國內(nèi)企業(yè)仍需高度依賴國際芯片公司,隨著森思泰克、加特蘭、岸達科技、清能華波、微度芯創(chuàng)、矽杰微電子、晟德微集成電路等本土企業(yè)的成長,未來4D雷達的普及速度或?qū)⑦M一步加快。